Vibronic Ground State Rotational Spectrum of 3-Bromothiophene

Quadrupole Hyperfine Structure and Centrifugal Distortion Analysis

Dirk Hübner, Eckhard Fliege, and Dieter H. Sutter Institut für Physikalische Chemie der Christian-Albrechts-Universität

Z. Naturforsch. 38 a, 1238 – 1247 (1983); received August 29, 1983

The rotational spectrum of 3-bromothiophene was investigated in the frequency range between 8 and 18 GHz by use of a microwave Fourier transform spectrometer. Both a- and b-type spectra were assigned for the vibronic ground state. Rotational constants, quartic centrifugal distortion constants and quadrupole coupling constants were obtained for the ⁷⁹Br- and ⁸¹Br-isotopic species. For the analysis, the effective rotational Hamiltonian including centrifugal distortion in the form of Van Eijck's symmetric top reduction and bromine quadrupole coupling was set up in the coupled basis of the limiting symmetric top, $|J, K, I, F, M_F\rangle$, and was diagonalized numerically. Spin rotation interaction was neglected.

Introduction

The investigation of the rotational spectrum of 3-bromothiophene was initiated because of our current interest in the effects of halogen substitution on the magnetic properties of aromatic rings [1, 2, 3]. In the following we present a high resolution study of the vibronic ground state rotational spectra of ${}^{12}C_4{}^{1}H_3{}^{32}S^{79}Br$ and of ${}^{12}C_4{}^{1}H_3{}^{32}S^{81}Br$. In the final stages of this work we became aware of a similar study carried out recently by Sasada, Saitoh, and Tobita [4]. However, due to the superior performance of the microwave Fourier transform spectrometer used in our work, our data, which include the analysis of the weak μ_b -type spectra and a complee centrifugal distortion analysis up to fourth order, are considerably more accurate and more complete.

Experimental

Commercial 3-bromothiophene (EGA-Chemie) was used after several bulp to bulp distillations without further purification. Since the standard Stark spectra appeared comparatively weak, we switched to the Fourier transform spectrometer developed by Dreizler and coworkers [5] in order to exploit its higher sensitivity and resolution. Typical recording conditions were temperatures about – 55 °C and pressures about 1 mtorr.

Reprint requests to Prof. Dr. D. H. Sutter, Institut für Physikalische Chemie, Christian-Albrechts-Universität, Olshausenstr. 40, D-2300 Kiel, Germany.

In Fig. 1 we present a Fourier transform spectrum of the quadrupole hyperfine pattern of the $4_{13} \rightarrow 5_{14}$ rotational transition of ¹²C₄¹H₃³²S⁷⁹Br. This spectrum is typical for the signal to noise ratio and the spectral resolution achieved in the present investigation. For comparison we also show a computer simulation of the quadrupole hyperfine structure in the standard absorption spectrum. The latter was calculated from our final data for the quadrupole coupling constants, rotational constants and centrifugal distortion constants (see below). The discrepancy between the relative intensity patterns in the Fourier transform spectrum and in the standard absorption spectrum is obvious. This is however a common feature of microwave Fourier transform spectroscopy and reflects the fact that the polarization efficiency of the exciting microwave pulse is not the same for the different satellites.

Apart from the dipole transition matrix element, the polarization efficiency also depends on the power and duration of the microwave pulse and on the frequency offset between the resonance frequency of the individual transition and the carrier frequency in the exciting pulse [6]. As a result of such differences in the initial polarizations, the intensities of the subsequent transient molecular emission signals do not any more directly reflect the dipole matrix elements and statistical weight factors as would be the case in a standard absorption spectrum.

Throughout the present investigation the transient i. f. signals corresponding to the molecular emission signals were digitized at a rate of 50 MHz (20 ns per

0340-4811 / 83 / 1100-1238 \$ 01.3 0/0. – Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

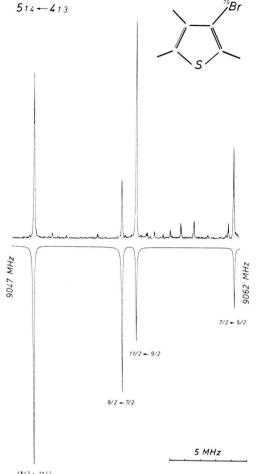


Fig. 1. The upper trace shows the power spectrum for the central section of the $^{79} Br$ quadrupole hyperfine multiplet of the $^{12} C_4 ^{1} H_3 ^{32} S^{79} Br$ $5_{14} \rightarrow 4_{13}$ rotational transition. The time domain signal consisted of 1024 data points taken at 20 ns per point after a delay of 0.5 μs to allow pulse echoes to die out. The pulse duration was 90 ns. The carrier frequency in the exciting pulse was 9057 MHz. Eight times 256 k successive free induction decay signals were sampled in order to improve the signal to noise ratio. 3072 zeros were added before Fourier transforming. Pressure: 1.12 mTorr. Temperature: $-56\,^{\circ} C$. The lower trace shows a computer simulation calculated according to Eq. (1) from the quadrupole coupling constants, rotational constants and centrifugal distortion constants listed in Tables 3 and 4. The experimental linewidth is 80 kHz full width at half height. "Wrong" relative intensities in the experimental spectrum are partly due to the frequency-offset dependence of the polarization efficiency of the pulse.

data point) and 1024 subsequent data points were taken per experiment. Typically the signals of $2.56 \cdot 10^5$ to $2.05 \cdot 10^6$ repetitive transient emissions were sampled and the final data sequence was incremented by 3072 zeros before the Fourier trans-

formation was carried out. The rate of digitization (20 ns per data point) and the number of points (1024 + 3072) results in a meshwidth of $\Delta v = 1/(4096 \cdot 20 \cdot 10^{-9})$ Hz $\cong 12.2$ kHz in the grid of the discrete Fourier transform spectrum [7], which is still reasonably below the observed linewidth of 80 to 100 kHz. The final satellite frequencies listed in Tables 1 and 2 were calculated from a three point interpolation around the line centers. Due to the limited signal to noise ratio we estimate their precision to 6 kHz for the more intense satellites and to about 12 kHz for the weaker satellites.

Analysis of the spectrum

Initial rotational constants were calculated under the assumption of an undisturbed thiophene ring [8] with a bromine atom substituted in the β -position. The C-Br bond distance, 1.85 Å, was taken from bromobenzene [9]. In Fig. 2 we show this structure and the principal inertia axes system for the ⁷⁹Br isotopic species. The position and orientation of the principal inertia axes system is largely determined by the position of the bromine atom which accounts for about half the mass of the whole molecule.

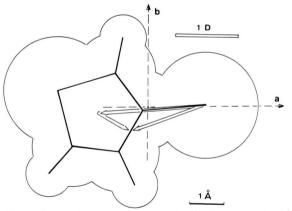


Fig. 2. Approximate structure and dipole moments of $^{79}\text{Br-}3\text{-}\text{bromothiophene}$ based on an undistorted thiophene ring [8], a C–Br bondlength of 1.85 Å taken from bromobenzene [9] and a vector addition of the experimental dipole moments of thiophene [10] and bromobenzene [11]. Also shown is the position and orientation of the principal inertia axes system. The atomic (a, b)-coordinates of this approximate structure are (-2.605, 0.517) for the sulfur atom; (-0.962, 1.005), (-0.119, -0.074), (-0.821, -1.313) and (-2.180, -1.143) for the carbon atoms; (-0.714, 2.053), (-0.344, -2.283) and (-2.952, -1.895) for the hydrogen atoms and (1.727, 0.050) for the $^{79}\text{Br-atom.}$ (All values in Å units.) The resulting rigid rotor rotational constants, A = 7178.79 MHz, B = 939.06 MHz and C = 830.43 MHz differ at most by 1% from the experimental values listed in Table 4.

Table 1. Observed and calculated rotational transition frequencies for $^{12}\text{C}_4{}^1\text{H}_3{}^{79}\text{Br}^{32}\text{S}$. The calculated frequencies are based on the rotational constants, centrifugal distortion constants and ^{79}Br quadrupole coupling constants listed in Tables 3 and 4 respectively. They were obtained from a complete diagonalization of the Hamiltonian matrix corresponding to Eq. (1) of the text. Also given for comparison are the rigid rotor frequencies v_{RR} calculated from $\hat{\mathscr{H}}_{RR}/h$ only and the hypothetical "center frequencies" [17] of the hyperfine multiplets, v_{CD} , calculated from $(\hat{\mathscr{H}}_{RR} + \hat{\mathscr{H}}_{CD})/h$.

Rotational transitions VRR VCD	<i>F'</i> ← <i>F''</i>	v _{obs} /MHz	v _{calc} /MHz	v _{obs} – v _{calc} kHz	Rotational transitions v _{RR} v _{CD}	$F' \leftarrow F''$	v _{obs} /MHz	$v_{\rm calc}/{ m MHz}$	ν _{obs} – ν _{calc} kHz
5 1 5 4 1 4 8 511.305 MHz 8 511.290 MHz	13/2 11/2 11/2 9/2 9/2 7/2 7/2 5/2	8 506.250 8 513.038 8 519.147 8 511.803	8 506.258 8 513.042 8 519.157 8 511.829	- 8 - 4 - 10 - 26	7 1 7 6 1 6 11 906.450 MHz 11 906.415 MHz	15/2 13/2 13/2 11/2	11 903.946 11 906.352 11 910.101 11 907.509	11 903.947 11 906.353 11 901.103 11 907.511	- 1 - 1 - 2 - 2
5 1 4 4 1 3 9 053.505 MHz 9 053.488 MHz	13/2 11/2 11/2 9/2 9/2 7/2 7/2 5/2	9 048.417 9 055.205 9 061.646 9 054.275	9 048.414 9 055.208 9 061.644 9 054.277	$\begin{array}{r} 3 \\ -3 \\ 2 \\ -2 \end{array}$	7 2 6 6 2 5 12 293.028 MHz 12 292.977 MHz		12 287.745 12 297.647 12 299.090 12 288.583	12 287.746 12 297.647 12 299.094 12 288.589	$ \begin{array}{r} -1 \\ 0 \\ -4 \\ -6 \end{array} $
5 2 4 4 2 3 8 785.459 MHz 8 785.435 MHz	13/2 11/2 11/2 9/2 9/2 7/2 7/2 5/2	8 773.602 8 801.401 8 798.032 8 768.267	8 773.613 8 801.395 8 798.033 8 768.288	$ \begin{array}{r} -11 \\ 6 \\ -1 \\ -21 \end{array} $	7 2 5 6 2 4 12 371.655 MHz 12 371.602 MHz		12 366.323 12 376.378 12 377.797 12 367.120	12 366.327 12 376.380 12 377.801 12 367.125	- 4 - 2 - 4 - 5
5 2 3 4 2 2 8 813.750 MHz 8 813.726 MHz	9/2 7/2 7/2 5/2	8 801.769 8 829.704 8 826.369 8 796.499	8 801.766 8 829.706 8 826.374 8 796.509	$\begin{array}{r} 3 \\ -2 \\ -5 \\ -10 \end{array}$	7 3 5 6 3 4 12 315.124 MHz 12 315.053 MHz	13/2 11/2 11/2 9/2	12 305.230 12 327.743 12 325.220 12 301.591	12 305.231 12 327.746 12 325.216 12 301.598	$ \begin{array}{r} -1 \\ -3 \\ 4 \\ -7 \end{array} $
6 0 6 5 0 5 10 496.961 MHz 10 496.938 MHz	11/2 9/2 9/2 7/2	10 494.924 10 494.688 10 500.976 10 501.224	10 494.915 10 494.702 10 500.972 10 501.214	9 - 14 4 10	7 3 4 6 3 3 12 316.582 MHz 12 316.511 MHz	13/2 11/2 11/2 9/2	12 306.671 12 329.193 12 326.678 12 303.046	12 306.672 12 329.203 12 326.677 12 303.052	-1 -10 1 -6
6 1 6 5 1 5 10 209.842 MHz 10 209.819 MHz	11/2 9/2 9/2 7/2	10 206.393 10 210.274 10 214.922 10 210.811	10 206.395 10 210.263 10 214.925 10 210.827	$ \begin{array}{r} -2 \\ \hline 11 \\ -3 \\ -16 \end{array} $	7 4 4 6 4 3 7 4 3 6 4 2 12 311.111 MHz 12 311.014 MHz		12 294.663 12 335.022 12 326.679 12 285.116	12 294.660 12 335.021 12 326.684 12 285.117	3 1 - 5 - 1
6 1 5 5 1 4 10 860.126 MHz 10 860.097 MHz	13/2 11/2 11/2 9/2 9/2 7/2	10 856.631 10 860.502 10 865.463 10 861.308	10 856.634 10 860.504 10 865.471 10 861.312	- 3 - 2 - 8 - 4	7 5 3 6 5 2 7 5 2 6 5 1 12 309.088 MHz 12 308.957 MHz	11/2 9/2	12 284.132 12 347.826 12 331.483 12 267.406	12 284.135 12 347.828 12 331.488 12 267.416	$ \begin{array}{r} -3 \\ -2 \\ -5 \\ -10 \end{array} $
6 2 5 5 2 4 10 539.952 MHz 10 539.916 MHz	11/2 9/2 9/2 7/2	10 532.304 10 548.157 10 548.596 10 531.676	10 532.306 10 548.157 10 548.594 10 531.686	$\begin{array}{c} -2 \\ 0 \\ 2 \\ -10 \end{array}$	7 6 2 6 61 7 6 1 6 6 0 12 308.027 MHz 12 307.854 MHz	11/2 9/2	12 272.504 12 365.355 12 338.440 12 247.694	12 272.508 12 365.356 12 338.443 12 247.710	$ \begin{array}{r} -4 \\ -1 \\ -3 \\ -16 \end{array} $
6 2 4 5 2 3 10 589.321 MHz 10 589.284 MHz	11/2 9/2 9/2 7/2	10 581.583 10 597.573 10 598.017 10 580.969	10 581.587 10 597.579 10 598.027 10 580.974	- 4 - 6 - 10 - 5	7 1 7 6 0 6 17 069.239 MHz 17 069.196 MHz		17 071.313 17 062.281 17 068.479 17 077.818	17 071.315 17 062.284 17 068.483 17 077.829	$ \begin{array}{r} -2 \\ -3 \\ -4 \\ -11 \end{array} $
6 3 3 5 3 2 10 554.460 MHz 10 554.408 MHz	13/2 11/2	10 539.733 10 575.891 10 568.653 10 530.875	10 539.776 10 575.890 10 568.655 10 530.885	$ \begin{array}{r} -3 \\ 1 \\ -2 \\ -10 \end{array} $	8 1 7 8 0 8 8 400.333 MHz 8 400.291 MHz		8 401.752 8 398.271 8 398.699 8 402.363	8 401.749 8 398.271 8 398.700 8 402.369	3 0 -1 -6
6 4 3 5 4 2 6 4 2 5 4 1 10 551.154 MHz 10 551.079 MHz		10 526.495 10 591.500 10 572.772 10 506.780	10 526.496 10 591.498 10 572.774 10 506.788	$ \begin{array}{r} -1 \\ 2 \\ -2 \\ -8 \end{array} $	8 0 8 7 1 7 9 100.810 MHz 9 100.766 MHz	15/2 13/2	9 095.946 9 104.562 9 106.291 9 097.375	9 095.949 9 104.564 9 106.292 9 097.388	$ \begin{array}{r} -3 \\ -2 \\ -1 \\ -13 \end{array} $
6 5 2 5 5 1 6 5 1 5 5 0 10 549.879 MHz 10 549.775 MHz	13/2 11/2 11/2 9/2	10 512.134 10 615.355 10 580.513 10 479.731	10 512.138 10 615.349 10 580.519 10 479.751	$ \begin{array}{r} -4 \\ 6 \\ -6 \\ -20 \end{array} $	8 0 8 7 0 7 13 944.631 MHz 13 944.578 MHz	17/2 15/2 15/2 13/2		13 943.191 13 946.624	-3 -7 -12 -4
7 0 7 6 0 6 12 225.418 MHz 12 225.383 MHz	13/2 11/2	12 223.647	12 223.861 12 223.655 12 228.150 12 228.378	-3 -8 -7 -3	8 1 8 7 1 7 13 600.892 MHz 13 600.840 MHz	17/2 15/2 15/2 13/2		13 598.984 13 600.573 13 603.465 13 601.790	- 2 - 1 - 2 - 1

Table 1 (continued)

Rotational transitions v _{RR} v _{CD}	$F' \leftarrow F''$	$v_{ m obs}$	$v_{ m calc}$	$v_{\rm obs} - v_{\rm calc}$	Rotational transitions v _{RR} v _{CD}	$F' \leftarrow F''$	$v_{ m obs}$	$v_{ m calc}$	v _{obs} – v _{calc}
8 1 7 7 1 6 14 465.888 MHz 14 465.823 MHz	19/2 17/2 17/2 15/2 15/2 13/2 13/2 11/2	14 463.940 14 465.509 14 468.524 14 466.841	14 463.945 14 465.512 14 468.530 14 466.848	- 5 - 3 - 6 - 7	8 3 5 7 3 4 14 080.274 MHz 14 080.180 MHz	19/2 17/2 17/2 15/2 15/2 13/2 13/2 11/2	14 073.145 14 088.180 14 087.595 14 071.846	14 073.147 14 088.189 14 087.601 14 071.862	-2 -9 -6 -16
8 2 6 8 1 7 17 045.217 MHz 17 045.134 MHz	19/2 19/2 17/2 17/2 15/2 15/2 13/2 13/2	17 053.078 17 034.486 17 037.581 17 056.596	17 053.080 17 034.482 17 037.586 17 056.588	$ \begin{array}{r} -2 \\ 4 \\ -5 \\ 8 \end{array} $	8 4 5 7 4 4 8 4 4 7 4 3 14 071.739 MHz 14 071.615 MHz	19/2 17/2 17/2 15/2 15/2 13/2 13/2 11/2	14 060.135 14 086.973 14 083.080 14 055.298	14 060.138 14 086.975 14 083.081 14 055.300	$ \begin{array}{r} -3 \\ -2 \\ -1 \\ -2 \end{array} $
8 2 7 7 2 6 14 044.453 MHz 14 044.383 MHz	19/2 17/2 17/2 15/2 15/2 13/2 13/2 11/2	14 040.604 14 047.195 14 048.836 14 041.872	14 040.608 14 047.202 14 048.839 14 041.876	$ \begin{array}{r} -4 \\ -7 \\ -3 \\ -4 \end{array} $	8 5 4 7 5 3 8 5 3 7 5 2 14 068.712 MHz 14 068.549 MHz	19/2 17/2 17/2 15/2 15/2 13/2 13/2 11/2	14 051.245 14 093.453 14 085.114 14 042.085	14 051.250 14 093.458 14 085.126 14 042.096	- 5 - 5 - 12 - 11
8 2 6 7 2 5 14 161.574 MHz 14 161.499 MHz	19/2 17/2 17/2 15/2 15/2 13/2 13/2 11/2	14 157.736 14 164.417 14 166.106 14 158.887	14 157.738 14 164.422 14 166.110 14 158.894	- 2 - 5 - 4 - 7	8 6 3 7 6 2 8 6 2 7 6 1 14 067.127 MHz 14 066.916 MHz	19/2 17/2 17/2 15/2 15/2 13/2 13/2 11/2	14 042.410 14 103.687 14 089.586 14 028.277	14 042.417 14 103.693 14 089.588 14 028.287	$ \begin{array}{r} -7 \\ -6 \\ -2 \\ -10 \end{array} $
8 3 6 7 3 5 14 077.361 MHz 14 077.267 MHz	19/2 17/2 17/2 15/2 15/2 13/2 13/2 11/2	14 070.223 14 085.264 14 084.680 14 068.937	14 070.228 14 085.266 14 084.684 14 068.954	-5 -2 -4 -17	8 7 2 7 7 1 8 7 1 7 7 0 14 066.190 MHz 14 065.924 MHz	19/2 17/2 17/2 15/2 15/2 13/2 13/2 11/2	14 032.810 14 117.007 14 095.592 14 013.193	14 032.800 14 117.012 14 095.590 14 013.208	10 -5 2 -15

Table 2. Observed and calculated rotational transition frequencies for $^{12}C_4{}^1H_3{}^{81}Br^{32}S.$

Rotational transition v_{RR} v_{CD}	$F' \leftarrow F''$	v _{obs} /MHz	v _{calc} /MHz	ν _{obs} – ν _{calc} / kHz	Rotational transition v _{RR} v _{CD}	$F' \leftarrow F''$	v _{obs} /MHz	v _{calc} /MHz	ν _{obs} – ν _{calc} / kHz
5 1 5 4 1 4 8 426.869 MHz 8 426.856 MHz	13/2 11/2 11/2 9/2 9/2 7/2 7/2 5/2	8 422.620 8 428.328 8 433.443 8 427.336	8 422.625 8 428.337 8 433.456 8 427.363	-5 -9 -13 -7	6 1 5 5 1 4 10 745.803 MHz 10 745.775 MHz		10 742.859 10 746.119 10 750.273 10 746.808	10 742.863 10 746.119 10 750.277 10 746.815	$ \begin{array}{r} -4 \\ 0 \\ -4 \\ -7 \end{array} $
5 1 4 4 1 3 8 958.092 MHz 8 958.075 MHz	13/2 11/2 11/2 9/2 9/2 7/2 7/2 5/2	8 953.802 8 959.517 8 964.895 8 958.773	8 953.807 8 959.523 8 964.906 8 958.781	$ \begin{array}{r} -5 \\ -6 \\ -11 \\ -8 \end{array} $	6 2 5 5 2 4 10 431.998 MHz 10 431.965 MHz	15/2 13/2 13/2 11/2 11/2 9/2 9/2 7/2	10 425.572 10 438.881 10 439.196 10 425.143	10 425.578 10 438.882 10 439.197 10 425.150	- 6 - 1 - 1 - 7
5 2 4 4 2 3 8 695.408 MHz 8 695.386 MHz	13/2 11/2 11/2 9/2 9/2 7/2 7/2 5/2	8 685.433 8 708.734 8 705.828 8 681.138	8 685.466 8 708.778 8 705.865 8 681.169	- 33 - 44 - 37 - 31	6 2 4 5 2 3 10 479.333 MHz 10 479.298 MHz	15/2 13/2 13/2 11/2 11/2 9/2 9/2 7/2	10 472.838 10 486.256 10 486.580 10 472.404	10 472.839 10 486.257 10 486.582 10 472.417	-1 -1 -2 -13
5 2 3 4 2 2 8 722.530 MHz 8 722.507 MHz	13/2 11/2 11/2 9/2 9/2 7/2 7/2 5/2	8 712.495 8 735.923 8 733.030 8 708.255	8 712.491 8 735.921 8 733.027 8 708.233	4 2 3 22	6 3 3 5 3 2 10 445.899 MHz 10 445.849 MHz	15/2 13/2 13/2 11/2 11/2 9/2 9/2 7/2	10 433.582 10 463.845 10 457.691 10 426.264	10 433.586 10 463.846 10 457.696 10 426.269	- 4 - 1 - 5 - 5
6 0 6 5 0 5 10 390.778 MHz 10 390.757 MHz	15/2 13/2 13/2 11/2 11/2 9/2 9/2 7/2	10 389.059 10 388.878 10 394.160 10 394.347	10 389.052 10 388.883 10 394.161 10 394.342	7 - 5 - 1 5	6 4 3 5 4 2 6 4 2 5 4 1 10 442.738 MHz 10 442.665 MHz	15/2 13/2 13/2 11/2 11/2 9/2 9/2 7/2	10 422.091 10 476.450 10 460.721 10 405.670	10 422.094 10 476.451 10 460.723 10 405.672	$ \begin{array}{r} -3 \\ -1 \\ -2 \\ -2 \end{array} $
6 1 6 5 1 5 10 108.670 MHz 10 108.648 MHz	15/2 13/2 13/2 11/2 11/2 9/2 9/2 7/2	10 105.772 10 109.027 10 112.964 10 109.527	10 105.769 10 109.026 10 112.955 10 109.528	3 1 9 -1	6 5 2 5 5 1 6 5 1 5 5 0 10 441.514 MHz 10 441.413 MHz	15/2 13/2 13/2 11/2 11/2 9/2 9/2 7/2	10 409.987 10 496.064 10 467.070 10 382.726	10 409.980 10 496.067 10 467.088 10 382.724	$\begin{array}{c} 7 \\ -3 \\ -18 \\ 2 \end{array}$

Table 2 (continued)

Rotational transition v _{RR} v _{CD}	$F' \leftarrow F''$	$v_{\rm obs}/{ m MHz}$	$v_{\rm calc}/{ m MHz}$	$v_{\rm obs} - v_{\rm calc} / kHz$	Rotational transition v _{RR} v _{CD}	$F' \leftarrow F''$	$v_{\rm obs}/{ m MHz}$	v _{calc} /MHz	$v_{\rm obs} - v_{\rm calc} / k{ m Hz}$
7 0 7 6 0 6 12 102.391 MHz 12 102.357 MHz	15/2 13/2	12 101.079 12 100.908 12 104.687 12 104.869	12 101.074 12 100.911 12 104.693 12 104.869	- 5 - 3 - 6 0	8 1 8 7 1 7 13 466.482 MHz 13 466.435 MHz	17/2 15/2	13 464.869 13 466.208 13 468.636 13 467.234	13 464.876 13 466.213 13 468.642 13 467.244	- 7 - 5 - 6 - 10
7 1 7 6 1 6 11 788.618 MHz 11 788.585 MHz	13/2 11/2 11/2 9/2	11 786.514 11 788.540 11 791.655 11 789.516	11 786.510 11 788.535 11 791.660 11 789.513	4 5 - 5 3	8 1 7 7 1 6 14 314.072 MHz 14 314.008 MHz		14 312.421 14 313.746 14 316.269 14 314.868	14 312.427 14 313.751 14 316.278 14 314.876	- 6 - 5 - 9 - 8
7 2 6 6 2 5 12 167.231 MHz 12 167.182 MHz 7 2 5 6 2 4	13/2 11/2	12 162.780 12 171.098 12 172.281 12 163.542 12 238.156	12 162.791 12 171.101 12 172.286 12 163.550 12 238.157	-11 -3 -5 -8	8 2 6 8 1 7 17 096.937 MHz 17 096.860 MHz	17/2 17/2	17 103.483 17 087.920 17 090.546 17 106.421	17 103.486 17 087.919 17 090.543 17 106.419	$-\frac{3}{1}$ $\frac{1}{3}$ $\frac{2}{2}$
12 242.632 MHz 12 242.581 MHz 7 3 5 6 3 4	15/2 13/2 13/2 11/2 11/2 9/2 17/2 15/2	12 246.588 12 247.754 12 238.873 12 180.112	12 246.592 12 247.751 12 238.878 12 180.114	$ \begin{array}{r} -4 \\ 3 \\ -5 \\ -2 \end{array} $	8 2 7 7 2 6 13 900.880 MHz 13 900.813 MHz	17/2 15/2	13 903.176 13 904.532	13 897.645 13 903.179 13 904.536 13 898.743	-5 -3 -4 -4
12 188.426 MHz 12 188.358 MHz 7 3 4 6 3 3	13/2 11/2 11/2 9/2 17/2 15/2		12 198.991 12 196.818 12 177.168 12 181.474	$ \begin{array}{r} -2 \\ -8 \\ -6 \\ -2 \\ \end{array} $	8 2 6 7 2 5 14 013.229 MHz 14 013.157 MHz		14 009.961 14 015.599 14 016.981 14 010.998	14 009.971 14 015.606 14 016.988 14 011.006	- 10 - 7 - 7 - 8
12 189.793 MHz 12 189.725 MHz 7 4 4 6 4 3 7 4 3 6 4 2		12 200.353 12 198.188 12 178.523 12 170.779 12 204.566	12 200.358 12 198.188 12 178.532 12 170.779 12 204.561	-5 0 -9 0 5	8 3 6 7 3 5 13 932.454 MHz 13 932.364 MHz	19/2 17/2 17/2 15/2	13 926.471 13 939.076	13 926.476 13 939.074 13 938.544 13 925.455	-5 2 -12
12 184.570 MHz 12 184.476 MHz 7 5 3 6 5 2 7 5 2 6 5 1 12 182.626 MHz	11/2 9/2 17/2 15/2 15/2 13/2	12 197.515 12 162.880 12 161.740 12 214.974 12 201.277	12 197.510 12 162.878 12 161.743 12 214.976 12 201.280	5 2 - 3 - 2 - 3	8 3 5 7 3 4 13 935.187 MHz 13 935.096 MHz	17/2 15/2 15/2 13/2	13 941.793	13 929.206 13 941.810 13 941.278 13 928.181	0 - 17 24 - 11
12 182.499 MHz 12 182.499 MHz 7 6 2 6 6 1 7 6 1 6 6 0 12 181.608 MHz	11/2 9/2 17/2 15/2 15/2 13/2	12 147.773 12 151.924 12 229.381 12 207.003	12 147.781 12 151.929 12 229.378 12 207.005	$ \begin{array}{r} -3 \\ -8 \\ -5 \\ 3 \\ -2 \end{array} $	8 4 5 7 4 4 8 4 4 7 4 3 13 927.036 MHz 13 926.916 MHz	17/2 15/2 15/2 13/2	13 936.454	13 917.306 13 939.781 13 936.465 13 913.326	
12 181.440 MHz 8 1 7 8 0 8 8 360.209 MHz 8 360.163 MHz	19/2 19/2 17/2 17/2 15/2 15/2	12 131.042 8 361.382	12 131.048 8 361.386 8 358.463 8 358.845	- 6 - 4 - -	8 5 4 7 5 3 8 5 3 7 5 2 13 924.134 MHz 13 923.976 MHz		13 909.498 13 944.811 13 937.785 13 901.912	13 909.503 13 944.813 13 937.789 13 901.899	-5 -2 -4 13
8 0 8 7 1 7 8 927.710 MHz 8 927.667 MHz		8 361.900 8 923.619 8 930.861 8 932.302 8 924.855	8 361.900 8 923.620 8 930.862 8 932.301 8 924.863	0 - 1 - 1 1 - 8	8 6 3 7 6 2 8 6 2 7 6 1 13 922.615 MHz 13 922.410 MHz		13 953.124 13 941.302	13 901.934 13 953.129 13 941.327 13 890.115	- 5
8 0 8 7 0 7 13 805.115 MHz 13 805.066 MHz	19/2 17/2 17/2 15/2 15/2 13/2	13 804.080 13 803.899 13 806.780 13 806.967	13 804.074 13 803.908 13 806.792 13 806.964	6 -9 -12 3	8 7 2 7 7 1 8 7 1 7 7 0 13 921.717 MHz 13 921.458 MHz		13 964.047 13 946.282	13 893.807 13 964.061 13 946.260 13 877.302	-1 -14 22 -18

The molecular *a*-axis (= axis of least moment of inertia) almost coincides with the C-Br bond and inspite of their disque shaped geometry both 3-bromothiophenes, as far as their rotational energy level patterns are concerned, closely correspond to

prolate symmetric tops with the *a*-axes as symmetry axes of the moment of inertia tensor.

Also shown in Fig. 2 is a prediction for the electric dipole moment vector. It was calculated as sum vector from the experimental dipole moments of

thiophene (μ = 0.55 Debye [10]) and bromobenzene (μ = 1.7 Debye [11]). With the predicted μ_a -value roughly three times μ_b , the rotational spectra were expected to be dominated by μ_a -type transitions with groups of lines corresponding to the $\Delta J = +1$, $\Delta K = 0$ transitions of the limiting prolate symmetric top.

Such groups of lines were indeed found at frequency intervals of approximately 1.7 GHz which roughly corresponds to the sum of the B and C rotational constants. The final assignment of the individual transitions within these groups was quickly established due to their typical bromine quadrupole hyperfine structure which could be predicted from the known quadrupole coupling constants of 3-bromofurane [12]. The assignment was confirmed by the excellent selfconsistency of the fit.

In Tables 1 and 2 we list the assigned transitions for the two most abundant isotopic species, $^{12}\text{C}_4{}^1\text{H}_3{}^{32}\text{S}^{79}\text{Br}$ (ca. 45.9%) and $^{12}\text{C}_4{}^1\text{H}_3{}^{32}\text{S}^{81}\text{Br}$ (ca. 44.9%) respectively. Both lists include several of the weak μ_b -transitions. This greatly reduces the experimental uncertainties in the A rotational constant.

For the final analysis we used the effective rotational Hamiltonian given in (1). It includes centrifugal distortion corrections up to quartic terms in the angular momentum operators and results from a second order perturbation treatment within the vibronic system which aims at the vibronic ground state [13].

Since as far as its rotational constants are concerned 3-bromothiophene comes close to a prolate symmetric top, the centrifugal distortion part of the Hamiltonian was arranged according to the "symmetric-top-reduction" proposed by Van Eijck [14] (Eq. (10) of [14]).

$$\hat{\mathcal{H}}_{eff}/h = A' \cdot \hat{J}_{a}^{2} + B' \cdot \hat{J}_{b}^{2} + C' \cdot \hat{J}_{c}^{2} \qquad \} \hat{\mathcal{H}}_{RR}/h$$

$$- D'_{J} \cdot \hat{J}^{4} - D'_{JK} \cdot \hat{J}^{2} \hat{J}_{a}^{2} - D'_{K} \cdot \hat{J}_{a}^{4}$$

$$- 2 \cdot \delta'_{J} \cdot \hat{J}^{2} (\hat{J}_{b}^{2} - \hat{J}_{c}^{2})$$

$$- 2 \cdot R'_{6} \cdot [3 (\hat{J}_{b}^{2} \cdot \hat{J}_{c}^{2} + \hat{J}_{c}^{2} \hat{J}_{b}^{2}) - \hat{J}_{b}^{4} - \hat{J}_{c}^{4}]$$

$$+ \frac{1}{4} \sum_{m=-2}^{2} (-1)^{m} Q_{m}^{(2)} \cdot V_{-m}^{(2)}$$

$$\} \hat{\mathcal{H}}_{Q}/h.$$
(1)

In Eq. (1) the indices a, b and c designate the principal inertia axes system of the rotating molecule.

A', B', C' are effective rotational constants measured in frequency units.

 $\hat{J}_a, \hat{J}_b, \hat{J}_c$ are the angular momentum operators corresponding to the components of the angular momentum with respect to the molecular axes system measured in units of \hbar .

 D'_J, D'_{JK}, D'_K are centrifugal distortion constants. δ'_J, R'_6 They too are measured in frequency units. For their defintion the reader is referred to [14].

In Eq. (1) the quadrupole coupling operator is expressed in spherical tensor notation. The Qm's and Vm's are defined as follows [15]:

$$Q_{0}^{(2)} = Q_{ZZ},$$

$$Q_{\pm 1}^{(2)} = \mp \sqrt{\frac{2}{3}} (Q_{XZ} \pm i Q_{YZ}),$$

$$Q_{\pm 2}^{(2)} = \frac{1}{\sqrt{6}} (Q_{XX} - Q_{YY} \pm 2i Q_{XY}),$$

$$V_{0}^{(2)} = V_{ZZ},$$

$$V_{\pm 1}^{(2)} = \mp \sqrt{\frac{2}{3}} (V_{XZ} \pm i V_{YZ}),$$

$$V_{\pm 2}^{(2)} = \frac{1}{\sqrt{6}} (V_{XX} - V_{YY} \pm 2i V_{XY}).$$
(2)

Here the indices X, Y, Z designate the space fixed axes of the laboratory system with the Z-axis in direction of the electric field vector of the incident microwave radiation. $Q_{FF'}$, (F, F' = X, Y, Z) are the elements of the bromine nuclear quadrupole moment tensor. Within a classical point charge model for the nucleus they correspond to the following expressions:

$$Q_{FF'} = \sum_{n} e_{n} \left[\frac{3}{2} \left(F_{n} \cdot F'_{n} + F'_{n} \cdot F_{n} \right) - \delta_{FF'} \cdot R_{n}^{2} \right]$$
(3)

with $R_n^2 = X_n^2 + Y_n^2 + Z_n^2$, $\delta_{FF'}$ the Kronecker symbol and e_n the electric charge of the *n*-th point charge within the nucleus. We note that some authors use a definition of the quadrupole moment which differs by a factor of 1/2 from the definition used here.

 $V_{FF'}$ are the second derivatives of the intramolecular Coulomb potential V with respect to the space fixed aces. They are taken at the position of the bromine nucleus. Only that part of V is considered which originates from charges outside the nucleus.

$$V_{FF'} = \sum_{\varepsilon} R_{\varepsilon}^{-5} e_{\varepsilon} \left[\frac{3}{2} \left(F_{\varepsilon} F_{\varepsilon}' + F_{\varepsilon}' F_{\varepsilon} \right) - \delta_{FF} R_{\varepsilon}^{2} \right].$$
 (4)

In (3) and (4) all coordinates are referred to an axes system parallel to the space fixed laboratory system but with its origin at the center of the quadrupole nucleus.

For the numerical analysis the matrix of the Hamiltonian given in (1) was set up in the coupled basis corresponding to the limiting symmetric top $|J, K_-, I, F, M_F\rangle$ [16]. This matrix factorizes into F-blocks (F = quantum number corresponding to the overall angular momentum including the spin of the Bromine nucleus (I) and the rotational angular momentum (J), but neglecting all other spins). In the case of the Br-nuclei with nuclear spin I = 3/2, each F-block comprises contributions from four J-blocks and was diagonalized numerically. The rotational constants, the quadrupole coupling constants and the quartic centrifugal distortion constants could be fitted to the observed spectra.

Since the quadrupole coupling constants essentially determine the splitting of the rotational transitions into the $F \rightarrow F'$ hyperfine satellites while the centrifugal distortion constants determine the position of the center frequency of the hfs multiplet [17], this fit was carried out in an iterative procedure based on the following three step cycle

- 1. Only $\hat{\mathcal{H}}_{RR}/h$ (with approximate rotational constants) and $\hat{\mathcal{H}}_{Q}/h$ were used to fit the quadrupole coupling constants to the observed multiplet splittings.
- 2. With these improved quadrupole coupling constants we calculated the hypothetical quadrupole free rotational transition frequencies (multiplet center frequencies).
- 3. Only \mathcal{H}_{RR}/h and \mathcal{H}_{CD}/h together with the multiplet center frequencies determined in step 2 were used for a least squares fit of the rotational constants and of the centrifugal distortion constants.

The improved rotational constants which resulted from step 3 were then used as input data for step 1 of the next cycle.

Selfconsistency was achieved already after two cycles. The results are presented in Table 3 (quadrupole coupling constants) and Table 4 (rotational constants and centrifugal distortion constants). As a

check for this numerical procedure we used the data of Tables 3 and 4 as input for a computer program which sets up the matrix of the complete effective Hamiltonian in the coupled symmetric top basis $|J, K_-, I, F, M_F\rangle$ and diagonalizes it numerically [18]

As might be expected from the small centrifugal corrections (below 300 kHz for the low J transitions observed here) both numerical procedures lead (within better than 0.1 kHz) to identical results.

Table 3. Bromine quadrupole coupling constants for the two isotopic species. Only $|\chi_{ab}|$ is determined by the experiment, but a negative sign would correspond to a tilt angle greater than 7° between the C- Br-bond axis and the principal z-axis of the quadrupole coupling tensor which appears highly unlikely. (y-axis perpendicular to the molecular plane). δ , defined in Eq. (6) of the text, is a measure of the double bond contribution to the carbon halogen bond (1.5%). The quadrupole coupling constants relate to the nuclear quadrupole moment and the field-gradients via $\chi_{aa} = \langle I, M_I = I | Q_{zz} | I, M_I = I \rangle \cdot V_{aa}/h$ etc.

	$^{12}C_4{}^{1}H_3{}^{32}S^{79}Br$	$^{12}C_4{}^{1}H_3{}^{32}S^{81}Br$
$(\chi_{bb} + \chi_{cc})/MHz$	- 571.60 (1)	- 477.57 (1)
$(\chi_{bb} - \chi_{cc})/MHz$	-14.37(3)	-12.05(5)
χ_{ab}/MHz	54.1 (6)	47.6 (11)
χ_{xx}/MHz	-296.36(10)	-247.94(17)
χ_{yy}/MHz	-278.62(2)	-232.76(3)
χ_{zz}/MHz	574.97 (9)	480.70 (14)
θ_{az}	3.57 (4)°	3.75 (9)°
$\Delta = (\chi_{xx} - \chi_{yy})/MHz$	- 17.74	- 15.18
$\eta = (\chi_{xx} - \chi_{yy})/\chi_{zz}$	-0.031	-0.032
δ	0.0154(1)	0.0157 (2)

Table 4. Rotational constants, asymmetry parameter κ , moments of inertia (conversion factor 505.376 MHz amu Å²), inertia defect and centrifugal distortion constants. (R'_6 follows from the other constants via the planarity condition; see Table 5).

	$^{12}C_4{}^{1}H_3{}^{32}S^{79}Br$	$^{12}\text{C}_4{}^{1}\text{H}_3{}^{32}\text{S}^{81}\text{Br}$
A'/MHz B'/MHz C'/MHz	7102.6529 (42) 933.1055 (5) 824.6167 (5)	7102.1713 (85) 922.9881 (7) 816.6978 (7)
χ	-0.965	-0.966
I_{aa} /amu Å 2 I_{bb} /amu Å 2 I_{cc} /amu Å 2	71.1531 541.6065 612.8617	71.1580 547.5434 618.8042
$(I_{cc}-I_{aa}-I_{bb})/\mathrm{amu}~\mathrm{\AA}^2$	0.102	0.103
D'_{J}/MHz D'_{JK}/MHz D'_{K}/MHz δ'_{J}/MHz $R'_{6}MHz$	$\begin{array}{c} 0.27(2)\cdot 10^{-4} \\ 0.270(4)\cdot 10^{-4} \\ 0.23(9)\cdot 10^{-2} \\ 0.34(28)\cdot 10^{-5} \\ -0.5(8)\cdot 10^{-6} \end{array}$	$\begin{array}{c} 0.25(4)\cdot 10^{-4} \\ 0.265(6)\cdot 10^{-3} \\ 0.21(19)\cdot 10^{-2} \\ 0.40(43)\cdot 10^{-5} \\ -0.7(13)\cdot 10^{-6} \end{array}$

Table 5. Correlation matrices for the least squares fit of the rotational constants and centrifugal distortion constants (step 3 of the iterative procedure described in the text). Due to the planarity condition [31]: $4C'D'_J - (B' - C')D'_{JK} - 2(2A' + B' + C')\delta'_J - 4(4A' + B' + C')R'_6 = 0$. R'_6 can not be determined independently and the fit was carried out accounting for the planarity condition as described in [32]. V. Typkes program ZFAP4 was used.

3-Bron	n(79)thiophe	en					
A'	1.000						
B'	0.264	1.000					
C'	-0.311	-0.400	1.000				
D_J'	-0.046	0.577	0.459	1.000			
D_{JK}^{\prime}	0.076	-0.078	0.048	-0.261	1.000		
D_K' δ_J'	0.858	-0.042	-0.042	-0.081	0.022	1.000	
δ_J'	0.360	0.811	-0.816	0.069	-0.088	0.047	1.000
3-Bron	n(81)thiophe	n					
A'	1.000						
B'	0.064	1.000					
C'	-0.122	-0.422	1.000				
D_J'	-0.132	0.588	0.422	1.000			
D'_{JK}	0.221	0.125	0.089	-0.287	1.000		
D_K'	0.920	-0.166	0.082	-0.160	0.186	1.000	
δ_J^{\prime}	0.226	0.807	-0.815	0.078	-0.102	-0.013	1.000

In fact in Tables 1 and 2 the frequencies labelled "calc" have been calculated from the molecular parameters listed in Tables 3 and 4 by direct diagonalization of the complete Hamiltonian given in (1).

Discussion

In view of the present lack of sufficient data for a complete structure determination from the rotational constants of different isotopic species, we restrict our discussion to some remarks on the observed bromine quadrupole coupling tensor.

From χ_{aa} , χ_{bb} and χ_{ab} we may calculate the quadrupole coupling tensor elements in its principal axes system, x, y, z (y-axis parallel to the molecular c-axis i.e. perpendicular to the molecular plane).

This requires a rotation by an angle

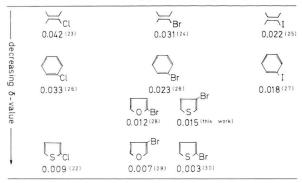
$$\theta_{az} = 1/2 \cdot \arctan(2 \chi_{ab}/(\chi_{aa} - \chi_{bb}))$$

about the c = y axis and leads to the quadrupole coupling tensor elements in its principal axes system which are listed in Table 3.

Depending on the actual sign of χ_{ab} , θ_{az} would be \pm 3.6° for ⁷⁹Br-3-bromothiopene (for $\chi_{ab}=\pm$ 54.1 MHz) and \pm 3.8° for ⁸¹Br-3-bromothiophene (for $\chi_{ab}=\pm$ 47.6 MHz). The upper (positive) sign would correspond to a *z*-axis closely alligned to the CBr bond axis (compare also Fig. 2), while the lower (negative) sign would correspond to a 7° tilt between the C-Br bond axis and the symmetry axis of the quadrupole coupling tensor. Since the quadrupole

coupling tensor reflects the symmetry of the close electronic surrounding of the nucleus, a 7° tilt would correspond to a rather extreme banana shaped σ -bond. We are therefore confident that the possibility of a negative sign for χ_{ab} may be discarded.

The asymmetry in the in plane (χ_{xx}) and out of plane (χ_{yy}) quadrupole coupling tensor elements perpendicular to the bond axis (z-axis) may be used as a measure for the degree of double bond character, δ , in the C-Br-bond [19], [20].


$$\delta = \frac{2}{3} \frac{\chi_{xx} - \chi_{yy}}{e \, Q \, q_{n+0}}.\tag{5}$$

In (5) the denominator $eQq_{n,1,0}$ represents the quadrupole coupling contribution of an electron in the atomic bromine p_z valence orbital (n = 4 for Br). Its value has been determined for both Br isotopes by King and Jaccarino [21] from an atomic beam magnetic resonance experiment. Their values are -769.756 MHz for 79 Br and -643.033 MHz for 81 Br.

Within a simple valence shell LCAO molecular orbital model [22] in which all nuclear contributions to the electric field gradient are neglected and in which only the one center integrals located at the Br nucleus are retained for the calculation of the quadrupole coupling tensor elements, δ as defined by (5) would be equal to the population difference in the bromine $4 p_x$ and $4 p_y$ orbitals i.e.

$$\delta = P_{p_x p_x} - P_{p_y p_y} = 2 \sum_{m}^{\text{occ. orb.}} (c_{mp_x}^2 - c_{mp_y}^2) . \tag{6}$$

Table 6. Double bond character in the carbon halogen bond of several unsaturated hydrocarbons as derived from the halogen nuclear quadrupole coupling constants according to Eq. (6) of the text. The value of 0.009 (or 0.9% double bond character) for 2 chlorothiopene is recalculated. It follows from the quadrupole coupling constants listed in Table 5 of [22] which have been checked by us to reproduce the list of experimental splittings. The value of 0.006 given by the authors appears to be a printing error.

In (6) c_{mp_x} is the coefficient of the bromine valence shell p_x orbital in the m-th molecular orbital. The sum runs over all occupied space orbitals and the factor of 2 accounts for occupation of each orbital with two electrons with antiparallel spins.

In Table 6 we list the δ -values calculated from (5) together with the corresponding values for several other aromatic systems. Also listed for comparison are the δ -values for the corresponding vinylhalides. First we note that there is a trend to increasing double bond character in the carbonhalogen bond when proceeding from I- to Cl-substitution. This trend parallels the improving overlap properties of the out of plane halogen p_v -orbitals with the out of plane p_v -orbital of the adjacent carbon atom.

However, we must also note two facts which still call for an explanation. First, the double bond character in the CBr bond of vinylbromide is larger than in bromobenzene while it is smaller in the substituted furanes and thiophenes. At first sight one would expect a trend in the same direction when changing from a delocalized system (benzene) to a system with a more localized double bond adjacent to the CBr bond i.e. one would expect the furanes and thiophenes to hold an intermediate position.

Second there is a marked difference in the double bond character of the α -substituted and of the β substituted heteroaromates, but with opposite trends for the furanes and for the thiophenes. While α bromofurane shows twice the double bond character of β -bromofurane, β -bromothiophene shows about three times the double bond character of α -bromothiophene. This effect is well above the experimental uncertainties in the δ -values which are on the order of ± 0.001 as is also seen in the consistency of the results for the two bromine isotopes. Our problems in understanding the data may of cause merely indicate that the simple LCAO-model upon which our interpretation of the quadrupole coupling constants is based, has been pushed beyond its limits of approximation if double bond characteres of the order of only one to four percent are discussed.

Acknowledgements

We thank V. Typke who provided his program ZFAP4 for the centrifugal distortion analysis. We further thank professors H. Dreizler and A. Guarnieri for reading the manuscript. The financial support from Deutsche Forschungsgemeinschaft and Fonds der Deutschen Chemischen Industrie is gratefully acknowledged. All numerical calculations were carried out at the Computer Center of the University of Kiel.

- [1] D. Hübner, M. Stolze, and D. H. Sutter, Z. Naturforsch. 36 a, 332 (1981).
- [2] D. Hübner, M. Stolze, and D. H. Sutter, Z. Naturforsch. 37 a, 95 (1982).
- [3] W. H. Stolze, M. Stolze, D. Hübner, and D. H. Sutter, Z. Naturforsch. 37 a, 1165 (1982).
- [4] Yoshiaki Sasada, Nasazi Saitoh, and Shinich Tobita, J. Mol. Spectr. **92**, 363 (1982).
- [5] G. Bestmann and H. Dreizler, Z. Naturforsch. 37 a, 58 (1982).
- [6] G. Bestmann, H. Dreizler, H. Mäder, and U. Andresen, Z. Naturforsch. **35 a**, 392 (1980).
- [7] Dieter Ziessow, One-Line Rechner in der Chemie, Abschnitt 2.2.2., Walter de Gruyter, Berlin 1973.
 [8] B. Bak, D. Christensen, L. Hansen-Nygaard, and S.
- Rastrup-Andersen, J. Mol. Spectry. 7, 58 (1961)
- [9] E. Rosenthal and B. P. Daily, J. Chem. Phys. 43, 2093 (1965).
- [10] T. Ogate and U. Kozima, J. Mol. Spectry. 42, 38 (1972).
- [11] Handbook of Chemistry and Physics, 62nd. edition, CRC-Press (1981).
- [12] M. Stolze, D. Hübner, and D. H. Sutter, Z. Naturforsch. 36 a, 886 (1981).

[13] For the principle of this perturbation treatment see for instance Chapt. 3 in H. C. Allen jr. and P. C. Cross, Molecular VIB-Rotors, John Wiley and Sons, Inc., New York 1963.

[14] B. P. van Eijck, J. Mol. Spectry. 53, 246 (1974).

- [15] Volker Heine, Group Theory in Quantum Mechanics, o. 199, Pergamon Press; London 1960.
- [16] H. P. Benz, A. Bauder, and Hs. H. Günthard, J. Mol. Spectry. 21, 156 (1966).
- [17] H. D. Rudolph, Z. Naturforsch. 23 a, 540 (1968).[18] Diplomtheses of M. Stolze and D. Hübner, Kiel 1980.
- [19] W. Gordy and R. L. Cook, Microwave Molecular Spectra, Chapt. 14.11.c. Interscience Publishers, New York 1970.
- [20] J. H. Goldstein, Chem. Phys. 22, 2078 (1954).
- [21] J. G. King and V. Jaccarino, Phys. Rev. 94, 1610 (1954).
- [22] J. Mjöberg and S. Ljunggren, Z. Naturforsch. 28 a, 729 (1973).
- [23] M. C. L. Gerry, Can. J. Chem. 49, 255 (1971).
- [24] D. de Kerckhove Varent, Ann. Soc. Sci. Bruxelles 84, 227 (1970).

- [25] M. J. Moloney, J. Chem. Phys. **50**, 1981 (1969).
- W. Caminati and A. M. Mirri, Chem. Phys. Lett. 12, 127 (1971).
- [27] W. Caminati and A. M. Mirri, Chem. Phys. Lett. 8, 409 (1971).
- [28] M. Stolze, Diplom-Thesis, University of Kiel 1980.
- [29] D. Hübner, Diplom-Thesis, University of Kiel 1980.
- [30] P. J. Mjöberg, W. M. Ralowski, and S. O. Ljunggren, Z. Naturforsch. 30 a, 541 (1975).
- [31] J. K. G. Watson, Aspects of Quartic and Sextic Centrifugal Effects on Rotational Energy Levels, in Vibrational Spectra and Structure, (J. R. Durig, ed.), Vol. 6. Elsevier Amsterdam 1977, (see page 73, S-reduction. representation I'. Van Eijck's and Watson's parameters correlate as follows:
- $D'_J = D_J$, $D'_{JK} = D_{JK}$, $D'_K = D_K$, $\delta'_J = -d_1$, $R'_6 = d_2$). [32] H. Jones and V. Typke, Z. Naturforsch. **36 a**, 1057